# Kaplow–Shavell welfarism without continuity

*Wai Chiu Woo*

*Mathematical Social Sciences*, 2018, vol. 96, issue C, 92-96

**Abstract:**
Although Kaplow and Shavell (2001) have established a devastating result that ”any non-welfarist method of policy assessment violates the Pareto principle”, they use a problematic assumption of continuity: social welfare is continuous in a non-merit good. This paper proposes using proximity preservation, a concept in topological social choice theory, to rebuild their theorem. The advantage of the new assumption is twofold. First, it is adopted for a good substantive reason, and not for mere technical convenience —this assumption prevents magnification of small errors, and is thus irresistible for any careful social evaluations. Second, it is much weaker than any version of continuity and thus offers a much more solid foundation for the theorem. As such, the new proof in this paper greatly strengthens the original result.

**Date:** 2018

**References:** View references in EconPapers View complete reference list from CitEc

**Citations** Track citations by RSS feed

**Downloads:** (external link)

http://www.sciencedirect.com/science/article/pii/S0165489618300398

Full text for ScienceDirect subscribers only

**Related works:**

This item may be available elsewhere in EconPapers: Search for items with the same title.

**Export reference:** BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text

**Persistent link:** https://EconPapers.repec.org/RePEc:eee:matsoc:v:96:y:2018:i:c:p:92-96

Access Statistics for this article

Mathematical Social Sciences is currently edited by *J.-F. Laslier*

More articles in Mathematical Social Sciences from Elsevier

Bibliographic data for series maintained by Dana Niculescu ().