EconPapers    
Economics at your fingertips  
 

A note on the sensitivity of the strategic asset allocation problem

W.J. Hurley and Jack Brimberg

Operations Research Perspectives, 2015, vol. 2, issue C, 133-136

Abstract: The Markowitz mean–variance portfolio optimization problem is a quadratic programming problem whose first-order conditions require the solution of a linear system. It is well known that the optimal portfolio weights are sensitive to parameter estimates, particularly the mean return vector. This has generally been attributed to the interaction of estimation error and optimization. In this paper we present some examples that suggest the linear system produced by the first-order conditions is ill-conditioned and it is this property that gives rise to the sensitivity of the optimal weights.

Keywords: Portfolio optimization; Sensitivity; Matrix condition (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S2214716015000147
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:oprepe:v:2:y:2015:i:c:p:133-136

DOI: 10.1016/j.orp.2015.06.003

Access Statistics for this article

Operations Research Perspectives is currently edited by Rubén Ruiz Garcia

More articles in Operations Research Perspectives from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:oprepe:v:2:y:2015:i:c:p:133-136