EconPapers    
Economics at your fingertips  
 

A spatial decomposition based math-heuristic approach to the asset protection problem

Dian Nuraiman, Melih Ozlen and John Hearne

Operations Research Perspectives, 2020, vol. 7, issue C

Abstract: This paper addresses the highly critical task of planning asset protection activities during uncontrollable wildfires known in the literature as the Asset Protection Problem (APP). In the APP each asset requires a protective service to be performed by a set of emergency response vehicles within a specific time period defined by the spread of fire. We propose a new spatial decomposition based math-heuristic approach for the solution of large-scale APP’s. The heuristic exploits the property that time windows are geographically correlated as fire spreads across a landscape. Thus an appropriate division of the landscape allows the problem to be decomposed into smaller more tractable sub-problems. The main challenge then is to minimise the difference between the final locations of vehicles from one division to the optimal starting locations of the next division. The performance of the proposed approach is tested on a set of benchmark instances from the literature and compared to the most recent Adaptive Large Neighborhood Search (ALNS) algorithm developed for the APP. The results show that our proposed solution approach outperforms the ALNS algorithm on all instances with comparable computation time. We also see a trend with the margin of out-performance becoming more significant as the problems become larger.

Keywords: Wildfires; Asset protection problem; Emergency response vehicles; Math-heuristic; Spatial decomposition (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S2214716019302386
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:oprepe:v:7:y:2020:i:c:s2214716019302386

DOI: 10.1016/j.orp.2020.100141

Access Statistics for this article

Operations Research Perspectives is currently edited by Rubén Ruiz Garcia

More articles in Operations Research Perspectives from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:oprepe:v:7:y:2020:i:c:s2214716019302386