Hedging performance of Chinese stock index futures: An empirical analysis using wavelet analysis and flexible bivariate GARCH approaches
Yang Hou and
Steven Li
Pacific-Basin Finance Journal, 2013, vol. 24, issue C, 109-131
Abstract:
In this paper, we assess the hedging performance of the newly established CSI 300 stock index futures over some short hedging horizons. We use wavelet analysis as well as conventional models (naïve, ordinary least squares, and error-correction) to compute the constant hedge ratios. The constant conditional correlation (CCC) and dynamic conditional correlation (DCC) bivariate generalised autoregressive conditional heteroskedasticity (BGARCH) specifications are employed to calculate the time-varying hedge ratios. Overall, we find that the CSI 300 stock index futures can be an effective hedging tool. Among the constant hedge ratio models, the wavelet analysis yields the best in-sample hedging performance, though its out-of-sample hedging performance is similar to other models. Comparing the time-varying ratio models, the CCC BGARCH model is better in terms of in-sample hedging effectiveness while for out-of-sample hedging performance, the DCC model is better with short hedging horizons and CCC model is more favourable with long hedging horizons. Finally, the question whether time-varying ratios outperform constant ratios depends on the length of the hedging horizon. Short horizons favour BGARCH hedging models while long horizons favour constant hedging ratio models.
Keywords: Hedge ratio; Hedging effectiveness; Wavelet analysis; Bivariate GARCH (search for similar items in EconPapers)
JEL-codes: G15 G19 G32 (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0927538X13000322
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:pacfin:v:24:y:2013:i:c:p:109-131
DOI: 10.1016/j.pacfin.2013.04.001
Access Statistics for this article
Pacific-Basin Finance Journal is currently edited by K. Chan and S. Ghon Rhee
More articles in Pacific-Basin Finance Journal from Elsevier
Bibliographic data for series maintained by Catherine Liu ().