Long memory or regime switching in volatility? Evidence from high-frequency returns on the U.S. stock indices
Guangyuan Gao,
Kin-Yip Ho and
Yanlin Shi
Pacific-Basin Finance Journal, 2020, vol. 61, issue C
Abstract:
Recent research suggests that long memory and regime switching can be effectively distinguished, if the cause of the confusion between them is properly controlled for. Motivated by this idea, our study aims to distinguish between them in modelling stock return volatility. We firstly model long memory and regime switching in volatility via the Long-Memory GARCH (LMGARCH) and Markov Regime-Switching GARCH (MRS-GARCH) models, respectively. A theoretical cause of the confusion between those processes is proposed with simulation evidence. Adopting the ideas of existing studies, an MRS-LMGARCH framework is further developed to control for this cause. Our Monte Carlo studies show that this model can effectively distinguish between the pure LMGARCH and pure MRS-GARCH processes. Finally, empirical studies of NASDAQ and S&P 500 index returns are conducted to demonstrate that our MRS-LMGARCH model can provide potentially more reliable estimates of the long-memory parameter, identify the volatility states and outperform both the LMGARCH and MRS-GARCH models.
Keywords: Volatility modelling; Long memory; Regime switching; Long-memory; GARCH; MRS-LMGARCH (search for similar items in EconPapers)
JEL-codes: C22 C51 C58 G32 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0927538X18300441
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:pacfin:v:61:y:2020:i:c:s0927538x18300441
DOI: 10.1016/j.pacfin.2018.08.013
Access Statistics for this article
Pacific-Basin Finance Journal is currently edited by K. Chan and S. Ghon Rhee
More articles in Pacific-Basin Finance Journal from Elsevier
Bibliographic data for series maintained by Catherine Liu ().