Time-varying higher-order conditional moments and forecasting intraday VaR and Expected Shortfall
A. Tolga Ergün and
Jongbyung Jun
The Quarterly Review of Economics and Finance, 2010, vol. 50, issue 3, 264-272
Abstract:
We estimate several GARCH- and Extreme Value Theory (EVT)-based models to forecast intraday Value-at-Risk (VaR) and Expected Shortfall (ES) for S&P 500 stock index futures returns for both long and short positions. Among the GARCH-based models we consider is the so-called Autoregressive Conditional Density (ARCD) model, which allows time-variation in higher-order conditional moments. ARCD model with time-varying conditional skewness parameter has the best in-sample fit among the GARCH-based models. The EVT-based model and the GARCH-based models which take conditional skewness and kurtosis (time-varying or otherwise) into account provide accurate VaR forecasts. ARCD model with time-varying conditional skewness parameter seems to provide the most accurate ES forecasts.
Keywords: Density; estimation; Higher-order; conditional; moments; Intraday; Value-at-Risk; and; Expected; Shortfall (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1062-9769(10)00023-2
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:quaeco:v:50:y:2010:i:3:p:264-272
Access Statistics for this article
The Quarterly Review of Economics and Finance is currently edited by R. J. Arnould and J. E. Finnerty
More articles in The Quarterly Review of Economics and Finance from Elsevier
Bibliographic data for series maintained by Catherine Liu ().