When was the U.S. housing downturn predictable? A comparison of univariate forecasting methods
Joachim Zietz and
Anca Traian
The Quarterly Review of Economics and Finance, 2014, vol. 54, issue 2, 271-281
Abstract:
This paper uses three classes of univariate time series techniques (ARIMA type models, switching regression models, and state-space/structural time series models) to forecast, on an ex post basis, the downturn in U.S. housing prices starting around 2006. The performance of the techniques is compared within each class and across classes by out-of-sample forecasts for a number of different forecast points prior to and during the downturn. Most forecasting models are able to predict a downturn in future home prices by mid 2006. Some state-space models can predict an impending downturn as early as June 2005. State-space/structural time series models tend to produce the most accurate forecasts, although they are not necessarily the models with the best in-sample fit.
Keywords: Case-Shiller housing price index; Forecasting; ARIMA; Switching models; State space/structural time series models (search for similar items in EconPapers)
JEL-codes: C53 E31 (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1062976913000987
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:quaeco:v:54:y:2014:i:2:p:271-281
DOI: 10.1016/j.qref.2013.12.004
Access Statistics for this article
The Quarterly Review of Economics and Finance is currently edited by R. J. Arnould and J. E. Finnerty
More articles in The Quarterly Review of Economics and Finance from Elsevier
Bibliographic data for series maintained by Catherine Liu ().