Feeding fossil fuels to the soil
C.A. Ramírez and
E. Worrell
Resources, Conservation & Recycling, 2006, vol. 46, issue 1, 75-93
Abstract:
In this paper, we assess energy demand due to fertilizer consumption in the period 1961–2001. Based on historical trends of gross energy requirements, we calculated that in 2001, global energy embedded in fertilizer consumption amounted to 3660 PJ, which represents about 1% of the global energy demand. Total energy demand has increased at an average rate of 3.8% p.a. Drivers behind the trend are rising fertilizer consumption and a shift towards more energy intensive fertilizers. Our results show that despite significant energy efficiency improvements in fertilizer manufacture (with exception of phosphate fertilizer in the last 20 years) improvements in energy efficiency have not been sufficient to offset growing energy demand due to rising fertilizer consumption. Furthermore, we found that specific energy consumption of ammonia and urea developed in close concordance with the learning curve model, showing progress ratios of 71% for ammonia production and 88% for urea. This suggests an alternative approach for including technological change in energy intensive industries in middle and long-term models dealing with energy consumption and CO2 emissions, while few learning curves exist for energy efficiency of end use technologies.
Keywords: Fertilizer industry; Energy analysis; Learning curve (search for similar items in EconPapers)
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0921344905000819
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:recore:v:46:y:2006:i:1:p:75-93
DOI: 10.1016/j.resconrec.2005.06.004
Access Statistics for this article
Resources, Conservation & Recycling is currently edited by Ming Xu
More articles in Resources, Conservation & Recycling from Elsevier
Bibliographic data for series maintained by Kai Meng ().