Environmental benefits of substituting talc by sugarcane bagasse fibers as reinforcement in polypropylene composites: Ecodesign and LCA as strategy for automotive components
Sandra M. Luz,
Armando Caldeira-Pires and
Paulo M.C. Ferrão
Resources, Conservation & Recycling, 2010, vol. 54, issue 12, 1135-1144
Abstract:
The auto industry is compelled to improve its environmental performance, namely by making use of renewable materials and cleaner manufacturing processes with lower energy intensity, and at the end-of-life of the auto, recyclable products and materials are desirable specifications that need to be considered at an earlier design stage, i.e., promoting the ecodesign. This paper provides an analysis of such a strategy for a material that is used extensively in the auto industry, namely polypropylene composites, as we have quantified the environmental impacts when sugarcane bagasse-reinforced polypropylene substitutes for talc-filled polypropylene (PP). To achieve these goals, a comparative Life Cycle Assessment (LCA) was performed for the two alternatives, from raw extractions to the end-of-life (EOL) phase of sugarcane bagasse-PP and talc-PP composite, where data gathered in different industries in Brazil were included in the LCA GaBi software. Our analysis shows that in addition to similar mechanical performance, natural fiber composites showed superior environmental performance throughout the entire life cycle. This superior performance is because: (1) in the cultivation phase, sugarcane absorbs carbon through the photosynthesis process while growing, thus reducing the global warming impact of the materials used; (2) the production process is cleaner; (3) sugarcane bagasse-reinforced composites are lighter for equivalent performance, which reduces the amount of polypropylene used; and (4) the economic reuse proposed for the EOL sugarcane bagasse-PP composite was the best alternative to minimize environmental impacts.
Keywords: Composites; Sugarcane bagasse fibers; LCA; Ecodesign; Recycling (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S092134491000073X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:recore:v:54:y:2010:i:12:p:1135-1144
DOI: 10.1016/j.resconrec.2010.03.009
Access Statistics for this article
Resources, Conservation & Recycling is currently edited by Ming Xu
More articles in Resources, Conservation & Recycling from Elsevier
Bibliographic data for series maintained by Kai Meng ().