Smart meters for enhanced water supply network modelling and infrastructure planning
Thulo Ram Gurung,
Rodney A. Stewart,
Ashok K. Sharma and
Cara D. Beal
Resources, Conservation & Recycling, 2014, vol. 90, issue C, 34-50
Abstract:
To design water distribution network infrastructure, water utilities formulate daily demand profiles and peaking factors. However, traditional methods of developing such profiles and peaking factors, necessary to carry out water distribution network modelling, are often founded on a number of assumptions on how top-down bulk water consumption is attributed to customer connections and outdated demand information that does not reflect present consumption trends; meaning infrastructure is often unnecessarily overdesigned. The recent advent of high resolution smart water meters allows for a new novel methodology for using the continuous ‘big data’ generated by these meter fleets to create evidence-based water demand curves suitable for use in network models. To demonstrate the application of the developed method, high resolution water consumption data from households fitted with smart water meters were collected from the South East Queensland and Hervey Bay regions in Australia. Average day (AD), peak day (PD) and mean day maximum month (MDMM) demand curves, often used in water supply network modelling, were developed from the herein created methodology using both individual end-use level and hourly demand patterns from the smart meters. The resulting modelled water demand patterns for AD, PD and MDMM had morning and evening peaks occurring earlier and lower main peaks (AD: 12%; PD: 20%; MDMM: 33%) than the currently used demand profiles of the regions’ water utility. The paper concludes with a discussion on the implications of widespread smart water metering systems for enhanced water distribution infrastructure planning and management as well as the benefits to customers.
Keywords: Diurnal patterns; Smart meters; Peaking factors; Water demand profiles; Water supply network modelling; Water end use (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0921344914001347
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:recore:v:90:y:2014:i:c:p:34-50
DOI: 10.1016/j.resconrec.2014.06.005
Access Statistics for this article
Resources, Conservation & Recycling is currently edited by Ming Xu
More articles in Resources, Conservation & Recycling from Elsevier
Bibliographic data for series maintained by Kai Meng ().