EconPapers    
Economics at your fingertips  
 

Assessing land-use impacts by clean vehicle systems

Patricia Pontau, Yi Hou, Hua Cai, Yi Zhen, Xiaoping Jia, Anthony S.F. Chiu and Ming Xu

Resources, Conservation & Recycling, 2015, vol. 95, issue C, 112-119

Abstract: Transition of the current gasoline-based transportation system into a renewable fuel-based clean vehicle system has the potential to reduce greenhouse gas emissions and improve national energy security. However, the realized net environmental benefit or energy security improvement is tightly linked to the electricity fuel mix (for electric cars and plug-in hybrids) and fueling strategy (for cars using alternative liquid fuels). In addition, different types of transportation fuels have significantly different demands on land resources, both on land type and quantity. For example, biofuel production requires large quantities of agricultural land, while wind farms require land with sufficient wind density. Furthermore, there is substantial regional variation in the quality of necessary resources. Regions with higher wind speeds require less land to produce the same amount of electricity than those with lower wind speed, assuming the same turbine design. Similarly, regions with optimal soil conditions and climate for crop cultivation require less land to produce the same amount of biofuel. To enable comparison of land demand among different fuel choices for clean vehicles, this research provides a county-scale assessment of land demand based on a “per-vehicle-mile-traveled” basis. Potential clean vehicle fuels assessed in this study include ethanol produced from different feedstocks (corn and switchgrass), biodiesel from algae cultivated in open ponds and closed systems, and electricity produced from renewable sources (wind and solar). Our results show that, in general, engineered systems (wind electricity, solar electricity, and biodiesel from closed-system algae) are more land efficient than natural systems (corn ethanol from corn starch and stover, switchgrass ethanol, and biodiesel from open-pond algae). Solar electricity is the dominant regional optimal fuel choice from the land-use perspective for engineered systems while lowland switchgrass ethanol and biodiesel from open-pond algae are the major optimal choices for the natural systems. These results shed light on developing both federal and state level policies to minimize land-use impact for the development of a clean vehicle system.

Keywords: Renewable transportation fuels; Land-use; Clean vehicles (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0921344914002705
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:recore:v:95:y:2015:i:c:p:112-119

DOI: 10.1016/j.resconrec.2014.12.008

Access Statistics for this article

Resources, Conservation & Recycling is currently edited by Ming Xu

More articles in Resources, Conservation & Recycling from Elsevier
Bibliographic data for series maintained by Kai Meng ().

 
Page updated 2025-03-19
Handle: RePEc:eee:recore:v:95:y:2015:i:c:p:112-119