A level-1 probabilistic risk assessment to blackout hazard in transmission power systems
Pierre Henneaux,
Pierre-Etienne Labeau and
Jean-Claude Maun
Reliability Engineering and System Safety, 2012, vol. 102, issue C, 41-52
Abstract:
The blackout risk in power systems is difficult to estimate by actual probabilistic methods because they usually neglect, or do not properly consider, the dependencies between failures and the dynamic evolution of the grid in the course of a transient. Our purpose is therefore to develop an integrated probabilistic approach to blackout analysis, capable of handling the coupling between events in cascading failure, and the dynamic response of the grid to stochastic initiating perturbations. This approach is adapted from dynamic reliability methodologies. This paper focuses on the modeling adopted for the first phase of a blackout, ruled by thermal transients. The goal is to identify dangerous cascading scenarios and better calculate their frequency. A Monte Carlo code specifically developed for this purpose is validated on a test grid. Some dangerous scenarios are presented and their frequency calculated by this method is compared with a more classical estimation neglecting thermal effects, showing significant differences. In particular, our method can reveal dangerous scenarios neglected or underestimated by the more classical method because they do not take into account the increase of failure rates in stress conditions.
Keywords: Power system reliability; Power system security; Power system stability; Probabilistic risk analysis; Blackout; Monte Carlo methods (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832012000221
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:102:y:2012:i:c:p:41-52
DOI: 10.1016/j.ress.2012.02.007
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().