Dynamic functional modelling of vulnerability and interoperability of Critical Infrastructures
P. Trucco,
E. Cagno and
M. De Ambroggi
Reliability Engineering and System Safety, 2012, vol. 105, issue C, 51-63
Abstract:
The paper describes a new integrated formalism for the dynamic functional modelling of vulnerability and interoperability of Critical Infrastructures at regional level. The model assesses the propagation of impacts in terms of disservice due to a wide set of threats. The disservice can be propagated within the same infrastructure or to other CIs by means of the interdependence model, which is able to represent physical, cybernetic, geographic as well as logical interdependencies and also the shift of the demand between two infrastructures that can provide the same or fully/partially replaceable service. The model is dynamic, since both the impact of the specific threat on a generic infrastructure node and the inoperability functions are time-dependent. A pilot study has been carried in the metropolitan area of the province of Milan, considering the Critical Infrastructures referred to the transportation system.
Keywords: Critical Infrastructures; Interoperability; Vulnerability; Time-dependent; Functional model (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832011002663
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:105:y:2012:i:c:p:51-63
DOI: 10.1016/j.ress.2011.12.003
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().