A support vector density-based importance sampling for reliability assessment
Hongzhe Dai,
Hao Zhang and
Wei Wang
Reliability Engineering and System Safety, 2012, vol. 106, issue C, 86-93
Abstract:
An importance sampling method based on the adaptive Markov chain simulation and support vector density estimation is developed in this paper for efficient structural reliability assessment. The methodology involves the generation of samples that can adaptively populate the important region by the adaptive Metropolis algorithm, and the construction of importance sampling density by support vector density. The use of the adaptive Metropolis algorithm may effectively improve the convergence and stability of the classical Markov chain simulation. The support vector density can approximate the sampling density with fewer samples in comparison to the conventional kernel density estimation. The proposed importance sampling method can effectively reduce the number of structural analysis required for achieving a given accuracy. Examples involving both numerical and practical structural problems are given to illustrate the application and efficiency of the proposed methodology.
Keywords: Adaptive metropolis; Finite element; Markov chain simulation; Reliability; Support vector density (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832012001044
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:106:y:2012:i:c:p:86-93
DOI: 10.1016/j.ress.2012.04.011
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().