EconPapers    
Economics at your fingertips  
 

Determination of the uncertainty domain of the Arrhenius parameters needed for the investigation of combustion kinetic models

Tibor Nagy and Turányi, Tamás

Reliability Engineering and System Safety, 2012, vol. 107, issue C, 29-34

Abstract: Many articles have been published on the uncertainty analysis of high temperature gas kinetic systems that are based on detailed reaction mechanisms. In all these articles a temperature independent relative uncertainty of the rate coefficient is assumed, although the chemical kinetics databases suggest temperature dependent uncertainty factors for most of the reactions. The temperature dependence of the rate coefficient is usually parameterized by the Arrhenius equation. An analytical expression is derived that describes the temperature dependence of the uncertainty of the rate coefficient as a function of the elements of the covariance matrix of the Arrhenius parameters. Utilization of the joint uncertainty of the Arrhenius parameters is needed for a correct uncertainty analysis in varying temperature chemical kinetic systems. The covariance matrix of the Arrhenius parameters, the lower and upper bounds for the rate coefficient, and the temperature interval of validity together define a truncated multivariate normal distribution of the transformed Arrhenius parameters. Determination of the covariance matrix and the joint probability density function of the Arrhenius parameters is demonstrated on the examples of two gas-phase elementary reactions.

Keywords: Uncertainty analysis; Combustion simulations; Chemical kinetics; Arrhenius parameters (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832011001281
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:107:y:2012:i:c:p:29-34

DOI: 10.1016/j.ress.2011.06.009

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:reensy:v:107:y:2012:i:c:p:29-34