Solving dynamic flowgraph methodology models using binary decision diagrams
Kim Bjorkman
Reliability Engineering and System Safety, 2013, vol. 111, issue C, 206-216
Abstract:
Dynamic flowgraph methodology (DFM) is a computationally challenging approach to the reliability analysis of dynamic systems with feedback loops. To improve the computational efficiency of DFM modelling, we propose a new approach, based on binary decision diagrams (BDDs), to solving DFM models. The objective of DFM analysis is to identify the root causes of a postulated top event. The result is a set of prime implicants that represent system faults resulting from diverse combinations of software logic errors, hardware failures, human errors and adverse environmental conditions. Two approaches to solving prime implicants have been implemented in software called YADRAT. The first approach is based on meta-products, and the second on zero-suppressed BDDs (ZBDD). Both approaches have been used previously in fault tree analysis. In this work, the ideas of prime implicant computations are adapted to a dynamic reliability analysis approach combined with multi-valued logic. The computational efforts required for the two approaches are compared by analysing three example systems. The results of the comparison show that BDDs are applicable in DFM computation and that in particular the ZBDD-based approach can solve moderately sized DFM models in a reasonable time.
Keywords: Binary decision diagram; Dynamic flowgraph methodology; Dynamic reliability analysis; Multi-valued logic; Prime implicant (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832012002384
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:111:y:2013:i:c:p:206-216
DOI: 10.1016/j.ress.2012.11.009
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().