Prognostics 101: A tutorial for particle filter-based prognostics algorithm using Matlab
Dawn An,
Joo-Ho Choi and
Nam Ho Kim
Reliability Engineering and System Safety, 2013, vol. 115, issue C, 161-169
Abstract:
This paper presents a Matlab-based tutorial for model-based prognostics, which combines a physical model with observed data to identify model parameters, from which the remaining useful life (RUL) can be predicted. Among many model-based prognostics algorithms, the particle filter is used in this tutorial for parameter estimation of damage or a degradation model. The tutorial is presented using a Matlab script with 62 lines, including detailed explanations. As examples, a battery degradation model and a crack growth model are used to explain the updating process of model parameters, damage progression, and RUL prediction. In order to illustrate the results, the RUL at an arbitrary cycle are predicted in the form of distribution along with the median and 90% prediction interval. This tutorial will be helpful for the beginners in prognostics to understand and use the prognostics method, and we hope it provides a standard of particle filter based prognostics.
Keywords: Battery degradation; Crack growth; Matlab code; Model-based prognostics; Particle filter; Remaining useful life (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (30)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832013000549
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:115:y:2013:i:c:p:161-169
DOI: 10.1016/j.ress.2013.02.019
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().