Decision support for life extension of technical systems through virtual age modelling
Pérez RamÃrez, Pedro A. and
Ingrid Bouwer Utne
Reliability Engineering and System Safety, 2013, vol. 115, issue C, 55-69
Abstract:
This article presents a virtual age model for decision support regarding life extension of ageing repairable systems. The aim of the model is to evaluate different life extension decision alternatives and their impact on the future performance of the system. The model can be applied to systems operated continuously (e.g., process systems) and systems operated on demand (e.g., safety systems). Deterioration and efficiency of imperfect maintenance is assessed when there is limited or no degradation data, and only failure and maintenance data is available. Systems that are in operation can be studied, meaning that the systems may be degraded. The current degradation is represented by a “current virtual age†, which is calculated from recorded maintenance data. The model parameters are estimated with the maximum likelihood method. A case study illustrates the application of the model for life extension of two fire water pumps in an oil and gas facility. The performance of the pump system is assessed with respect to number of failures, safety unavailability and costs during the life extension period.
Keywords: Life extension; Repairable system reliability; Virtual age; Degradation; Imperfect maintenance (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832013000379
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:115:y:2013:i:c:p:55-69
DOI: 10.1016/j.ress.2013.02.002
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().