EconPapers    
Economics at your fingertips  
 

Reliability analysis of a replication with limited number of journaling files

Mitsutaka Kimura, Mitsuhiro Imaizumi and Toshio Nakagawa

Reliability Engineering and System Safety, 2013, vol. 116, issue C, 105-108

Abstract: Recently, replication mechanisms using journaling files have been widely used for the server systems. We have already discussed the model of asynchronous replication system using journaling files [8]. This paper formulates a stochastic model of a server system with replication considering the number of transmitting journaling files. The server updates the storage database and transmits the journaling file when a client requests the data update. The server transmits the database content to a backup site either at a constant time or after a constant number of transmitting journaling files. We derive the expected number of the replication and of transmitting journaling files. Further, we calculate the expected cost and discuss optimal replication interval to minimize it. Finally, numerical examples are given.

Keywords: Disaster recovery; Replication; Journaling files; Reliability (search for similar items in EconPapers)
Date: 2013
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832013000434
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:116:y:2013:i:c:p:105-108

DOI: 10.1016/j.ress.2013.02.008

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:reensy:v:116:y:2013:i:c:p:105-108