Pilot application of risk informed safety margin characterization to a total loss of feedwater event
Richard R. Sherry,
Jeffery R. Gabor and
Stephen M. Hess
Reliability Engineering and System Safety, 2013, vol. 117, issue C, 65-72
Abstract:
In this paper we present the results of application of a risk-informed safety margin characterization (RISMC) approach to the analysis of a loss of feedwater (LOFW) event at a pressurized water reactor (PWR). This application considered a LOFW event with the failure of auxiliary feedwater (AFW) for which feed and bleed cooling would be required to prevent core damage. For this analysis the main parameters which impact core damage for the scenario were identified and probability distributions were constructed to represent the uncertainties associated with the parameter values. These distributions were sampled using a Latin Hypercube Sampling (LHS) technique to generate sets of sample cases to simulate using the MAAP4 code. Simulation results were evaluated to determine the safety margins relative to those obtained using typical probabilistic risk assessment (PRA) modeling (success criteria) assumptions.
Keywords: Risk-informed decision-making; Safety margins; Probabilistic risk assessment (search for similar items in EconPapers)
Date: 2013
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S095183201300094X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:117:y:2013:i:c:p:65-72
DOI: 10.1016/j.ress.2013.03.018
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().