Enabling the usage of UML in the verification of railway systems: The DAM-rail approach
S. Bernardi,
F. Flammini,
S. Marrone,
N. Mazzocca,
J. Merseguer,
R. Nardone and
V. Vittorini
Reliability Engineering and System Safety, 2013, vol. 120, issue C, 112-126
Abstract:
The need for integration of model-based verification into industrial processes has produced several attempts to define Model-Driven solutions implementing a unifying approach to system development. A recent trend is to implement tool chains supporting the developer both in the design phase and V&V activities. In this Model-Driven context, specific domains require proper modelling approaches, especially for what concerns RAM (Reliability, Availability, Maintainability) analysis and fulfillment of international standards. This paper specifically addresses the definition of a Model-Driven approach for the evaluation of RAM attributes in railway applications to automatically generate formal models. For this aim we extend the MARTE-DAM UML profile with concepts related to maintenance aspects and service degradation, and show that the MARTE-DAM framework can be successfully specialized for the railway domain. Model transformations are then defined to generate Repairable Fault Tree and Bayesian Network models from MARTE-DAM specifications. The whole process is applied to the railway domain in two different availability studies.
Keywords: Availability analysis; Formal models; Model-Driven engineering; Railway systems; RAM requirements; UML profiles (search for similar items in EconPapers)
Date: 2013
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S095183201300197X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:120:y:2013:i:c:p:112-126
DOI: 10.1016/j.ress.2013.06.032
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().