EconPapers    
Economics at your fingertips  
 

Unsaturated flow modeling in performance assessments for the Yucca Mountain disposal system for spent nuclear fuel and high-level radioactive waste

Rob P. Rechard, Jens T. Birkholzer, Yu-Shu Wu, Joshua S. Stein and James E. Houseworth

Reliability Engineering and System Safety, 2014, vol. 122, issue C, 124-144

Abstract: This paper summarizes the progression of modeling efforts of infiltration, percolation, and seepage conducted between 1984 and 2008 to evaluate feasibility, viability, and assess compliance of a repository in the unsaturated zone for spent nuclear fuel and high-level radioactive waste at Yucca Mountain, Nevada. Scientific understanding of infiltration in a desert environment, unsaturated percolation flux in fractures and matrix of the volcanic tuff, and seepage into an open drift in a thermally perturbed environment was initially lacking in 1984. As understanding of the Yucca Mountain disposal system increased through site characterization and in situ testing, modeling of infiltration, percolation, and seepage evolved from simple assumptions in a single model in 1984 to three modeling modules each based on several detailed process models in 2008. Uncertainty in percolation flux through Yucca Mountain was usually important in explaining the observed uncertainty in performance measures:cumulative release in assessments prior to 1995 and individual dose, thereafter.

Keywords: Unsaturated fluid flow; High-level radioactive waste; Spent nuclear fuel; Radioactive waste disposal; Performance assessment; Yucca Mountain (search for similar items in EconPapers)
Date: 2014
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832013001907
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:122:y:2014:i:c:p:124-144

DOI: 10.1016/j.ress.2013.06.025

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:reensy:v:122:y:2014:i:c:p:124-144