An integrated systemic model for optimization of condition-based maintenance with human error
S.M. Asadzadeh and
A. Azadeh
Reliability Engineering and System Safety, 2014, vol. 124, issue C, 117-131
Abstract:
This paper proposes an integrated systemic model for the integration of human reliability model with condition based maintenance (CBM) optimization. The problem of CBM optimization is formulated as finding the optimum parameters of a function for condition monitoring (CM) scheduling so that the average unit cost (AUC) of CBM system is minimized. The concept of functional resonance is employed to analyze human-induced failure scenarios emergent from erroneous functional dependencies. To quantify human reliability in CBM, the functional characteristics of human error in CBM as well as the main performance influencing factors (PIFs) are identified. The algorithms of diagnostics and prognostics are integrated in the simulation model of CBM. Then an exact simulation-optimization algorithm based on the use of two joint Fibonacci algorithms is proposed for global optimization of CM scheduling with human error. A sensitivity analysis has been performed based on the newly developed model considering multiple levels of human errors in CBM functions to observe the effects of human errors on overall system cost. The model is also useful in demonstrating the importance and effects of improving human and organizational aspects as well as technical aspects such as the accuracy and relevance of CM technology and the accuracy of prognostics algorithm.
Keywords: Condition based maintenance; Human error; Functional resonance; Cost optimization (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832013003050
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:124:y:2014:i:c:p:117-131
DOI: 10.1016/j.ress.2013.11.008
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().