Maintaining a system subject to uncertain technological evolution
T.P.K. Nguyen,
Bruno Castanier and
Thomas G. Yeung
Reliability Engineering and System Safety, 2014, vol. 128, issue C, 56-65
Abstract:
Maintenance decisions can be directly affected by the introduction of a new asset on the market, especially when the new asset technology could increase the expected profit. However new technology has a high degree of uncertainty that must be considered such as, e.g., its appearance time on the market, the expected revenue and the purchase cost. In this way, maintenance optimization can be seen as an investment problem where the repair decision is an option for postponing a replacement decision in order to wait for a potential new asset. Technology investment decisions are usually based primarily on strategic parameters such as current probability and expected future benefits while maintenance decisions are based on “functional†parameters such as deterioration levels of the current system and associated maintenance costs. In this paper, we formulate a new combined mathematical optimization framework for taking into account both maintenance and replacement decisions when the new asset is subject to technological improvement. The decision problem is modelled as a non-stationary Markov decision process. Structural properties of the optimal policy and forecast horizon length are then derived in order to guarantee decision optimality and robustness over the infinite horizon. Finally, the performance of our model is highlighted through numerical examples.
Keywords: Technology change; Maintenance/replacement investment; Markov decision processes; Dynamic programming; Forecast horizon (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832014000660
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:128:y:2014:i:c:p:56-65
DOI: 10.1016/j.ress.2014.04.004
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().