A copula-based sampling method for data-driven prognostics
Zhimin Xi,
Rong Jing,
Pingfeng Wang and
Chao Hu
Reliability Engineering and System Safety, 2014, vol. 132, issue C, 72-82
Abstract:
This paper develops a Copula-based sampling method for data-driven prognostics. The method essentially consists of an offline training process and an online prediction process: (i) the offline training process builds a statistical relationship between the failure time and the time realizations at specified degradation levels on the basis of off-line training data sets; and (ii) the online prediction process identifies probable failure times for online testing units based on the statistical model constructed in the offline process and the online testing data. Our contributions in this paper are three-fold, namely the definition of a generic health index system to quantify the health degradation of an engineering system, the construction of a Copula-based statistical model to learn the statistical relationship between the failure time and the time realizations at specified degradation levels, and the development of a simulation-based approach for the prediction of remaining useful life (RUL). Two engineering case studies, namely the electric cooling fan health prognostics and the 2008 IEEE PHM challenge problem, are employed to demonstrate the effectiveness of the proposed methodology.
Keywords: Prognostics and health management (PHM); Data-driven prognostics; Remaining useful life; COPULA; Reliability (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832014001446
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:132:y:2014:i:c:p:72-82
DOI: 10.1016/j.ress.2014.06.014
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().