An adaptive functional regression-based prognostic model for applications with missing data
Xiaolei Fang,
Rensheng Zhou and
Nagi Gebraeel
Reliability Engineering and System Safety, 2015, vol. 133, issue C, 266-274
Abstract:
Most prognostic degradation models rely on a relatively accurate and comprehensive database of historical degradation signals. Typically, these signals are used to identify suitable degradation trends that are useful for predicting lifetime. In many real-world applications, these degradation signals are usually incomplete, i.e., contain missing observations. Often the amount of missing data compromises the ability to identify a suitable parametric degradation model. This paper addresses this problem by developing a semi-parametric approach that can be used to predict the remaining lifetime of partially degraded systems. First, key signal features are identified by applying Functional Principal Components Analysis (FPCA) to the available historical data. Next, an adaptive functional regression model is used to model the extracted signal features and the corresponding times-to-failure. The model is then used to predict remaining lifetimes and to update these predictions using real-time signals observed from fielded components. Results show that the proposed approach is relatively robust to significant levels of missing data. The performance of the model is evaluated and shown to provide significantly accurate predictions of residual lifetime using two case studies.
Keywords: Condition monitoring; Prognostics; Functional principal components analysis; Functional regression analysis; Remaining useful life (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832014002063
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:133:y:2015:i:c:p:266-274
DOI: 10.1016/j.ress.2014.08.013
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().