Recommendations for the tuning of rare event probability estimators
Mathieu Balesdent,
Morio, Jérôme and
Julien Marzat
Reliability Engineering and System Safety, 2015, vol. 133, issue C, 68-78
Abstract:
Being able to accurately estimate rare event probabilities is a challenging issue in order to improve the reliability of complex systems. Several powerful methods such as importance sampling, importance splitting or extreme value theory have been proposed in order to reduce the computational cost and to improve the accuracy of extreme probability estimation. However, the performance of these methods is highly correlated with the choice of tuning parameters, which are very difficult to determine. In order to highlight recommended tunings for such methods, an empirical campaign of automatic tuning on a set of representative test cases is conducted for splitting methods. It allows to provide a reduced set of tuning parameters that may lead to the reliable estimation of rare event probability for various problems. The relevance of the obtained result is assessed on a series of real-world aerospace problems.
Keywords: Tuning of simulation parameters; Adaptive importance splitting; Rare event probability estimation; Kriging-based optimization (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832014002117
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:133:y:2015:i:c:p:68-78
DOI: 10.1016/j.ress.2014.09.001
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().