EconPapers    
Economics at your fingertips  
 

Experimental designs for autoregressive models applied to industrial maintenance

M. Amo-Salas, López-Fidalgo, J. and D.J. Pedregal

Reliability Engineering and System Safety, 2015, vol. 133, issue C, 87-94

Abstract: Some time series applications require data which are either expensive or technically difficult to obtain. In such cases scheduling the points in time at which the information should be collected is of paramount importance in order to optimize the resources available. In this paper time series models are studied from a new perspective, consisting in the use of Optimal Experimental Design setup to obtain the best times to take measurements, with the principal aim of saving costs or discarding useless information. The model and the covariance function are expressed in an explicit form to apply the usual techniques of Optimal Experimental Design. Optimal designs for various approaches are computed and their efficiencies are compared. The methods working in an application of industrial maintenance of a critical piece of equipment at a petrochemical plant are shown. This simple model allows explicit calculations in order to show openly the procedure to find the correlation structure, needed for computing the optimal experimental design. In this sense the techniques used in this paper to compute optimal designs may be transferred to other situations following the ideas of the paper, but taking into account the increasing difficulty of the procedure for more complex models.

Keywords: Time series; Fisher information matrix; D-optimality; AR(p); Covariance function (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832014002130
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:133:y:2015:i:c:p:87-94

DOI: 10.1016/j.ress.2014.09.003

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:reensy:v:133:y:2015:i:c:p:87-94