Comparing performance level estimation of safety functions in three distributed structures
Marita Hietikko,
Timo Malm and
Heikki Saha
Reliability Engineering and System Safety, 2015, vol. 134, issue C, 218-229
Abstract:
The capability of a machine control system to perform a safety function is expressed using performance levels (PL). This paper presents the results of a study where PL estimation was carried out for a safety function implemented using three different distributed control system structures. Challenges relating to the process of estimating PLs for safety related distributed machine control functions are highlighted. One of these examines the use of different cabling schemes in the implementation of a safety function and its effect on the PL evaluation. The safety function used as a generic example in PL calculations relates to a mobile work machine. It is a safety stop function where different technologies (electrical, hydraulic and pneumatic) can be utilized. It was detected that by replacing analogue cables with digital communication the system structure becomes simpler with less number of failing components, which can better the PL of the safety function.
Keywords: Machines; Distributed control system; Safety; Risk analysis; CANopen (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832014002713
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:134:y:2015:i:c:p:218-229
DOI: 10.1016/j.ress.2014.10.024
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().