Extended object-oriented Petri net model for mission reliability simulation of repairable PMS with common cause failures
Xin-yang Wu and
Xiao-Yue Wu
Reliability Engineering and System Safety, 2015, vol. 136, issue C, 109-119
Abstract:
Phased Mission Systems (PMS) have several phases with different success criteria. Generally, traditional analytical methods need to make some assumptions when they are applied for reliability evaluation and analysis of complex PMS, for example, the components are non-repairable or components are not subjected to common cause failures (CCF). However, the evaluation and analysis results may be inapplicable when the assumptions do not agree with practical situation. In this article, we propose an extended object-oriented Petri net (EOOPN) model for mission reliability simulation of repairable PMS with CCFs. Based on object-oriented Petri net (OOPN), EOOPN defines four reusable sub-models to depict PMS at system, phase, or component levels respectively, logic transitions to depict complex components reliability logics in a more readable form, and broadcast place to transmit shared information among components synchronously. After extension, EOOPN could deal with repairable PMS with both external and internal CCFs conveniently. The mission reliability modelling, simulation and analysis using EOOPN are illustrated by a PMS example. The results demonstrate that the proposed EOOPN model is effective.
Keywords: Common cause failures; Extended object-oriented Petri net; Mission reliability; Modelling and simulation; Phased-mission system (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832014002944
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:136:y:2015:i:c:p:109-119
DOI: 10.1016/j.ress.2014.11.012
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().