A multiwavelet support vector regression method for efficient reliability assessment
Hongzhe Dai,
Boyi Zhang and
Wei Wang
Reliability Engineering and System Safety, 2015, vol. 136, issue C, 132-139
Abstract:
As a new sparse kernel modeling technique, support vector regression has become a promising method in structural reliability analysis. However, in the standard quadratic programming support vector regression, its implementation is computationally expensive and sufficient model sparsity cannot be guaranteed. In order to mitigate these difficulties, this paper presents a new multiwavelet linear programming support vector regression method for reliability analysis. The method develops a novel multiwavelet kernel by constructing the autocorrelation function of multiwavelets and employs this kernel in context of linear programming support vector regression for approximating the limit states of structures. Three examples involving one finite element-based problem illustrate the effectiveness of the proposed method, which indicate that the new method is efficient than the classical support vector regression method for response surface function approximation.
Keywords: Structural reliability; Finite element; Multiwavelet kernel; Linear programming; Support vector regression (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832014003093
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:136:y:2015:i:c:p:132-139
DOI: 10.1016/j.ress.2014.12.002
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().