Risk-based fault detection using Self-Organizing Map
Hongyang Yu,
Faisal Khan and
Vikram Garaniya
Reliability Engineering and System Safety, 2015, vol. 139, issue C, 82-96
Abstract:
The complexity of modern systems is increasing rapidly and the dominating relationships among system variables have become highly non-linear. This results in difficulty in the identification of a system׳s operating states. In turn, this difficulty affects the sensitivity of fault detection and imposes a challenge on ensuring the safety of operation. In recent years, Self-Organizing Maps has gained popularity in system monitoring as a robust non-linear dimensionality reduction tool. Self-Organizing Map is able to capture non-linear variations of the system. Therefore, it is sensitive to the change of a system׳s states leading to early detection of fault. In this paper, a new approach based on Self-Organizing Map is proposed to detect and assess the risk of fault. In addition, probabilistic analysis is applied to characterize the risk of fault into different levels according to the hazard potential to enable a refined monitoring of the system. The proposed approach is applied on two experimental systems. The results from both systems have shown high sensitivity of the proposed approach in detecting and identifying the root cause of faults. The refined monitoring facilitates the determination of the risk of fault and early deployment of remedial actions and safety measures to minimize the potential impact of fault.
Keywords: Self-Organizing Map; Risk assessment; Probabilistic analysis; Bayesian updating (search for similar items in EconPapers)
Date: 2015
References: View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832015000563
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:139:y:2015:i:c:p:82-96
DOI: 10.1016/j.ress.2015.02.011
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().