EconPapers    
Economics at your fingertips  
 

Methodology for collision risk assessment of an airspace flow corridor concept

Yimin Zhang, John Shortle and Lance Sherry

Reliability Engineering and System Safety, 2015, vol. 142, issue C, 444-455

Abstract: This paper presents a methodology to estimate the collision risk associated with a future air-transportation concept called the flow corridor. This concept is designed to reduce congestion and increase throughput in en-route airspace by creating dedicated flight corridors across the continent. The methodology is a hybrid collision-risk methodology combining Monte Carlo simulation and dynamic event trees. Monte Carlo simulation is used to model the movement of aircraft within the corridor and to identify potential trajectories that might lead to a collision. Dynamic event trees are used to evaluate the effectiveness of subsequent safety layers that protect against collisions. The overall risk assessment captures the unique characteristics of the flow corridor concept, including self-separation within the corridor, lane change maneuvers, speed adjustments, and the automated separation assurance system. A tradeoff between safety and throughput is conducted, and a sensitivity analysis identifies the most critical parameters in the model.

Keywords: Dynamic event tree; Fault tree; Monte Carlo simulation; Air traffic management; Flow corridor concept; Autonomous Flight Management (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832015001647
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:142:y:2015:i:c:p:444-455

DOI: 10.1016/j.ress.2015.05.015

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:reensy:v:142:y:2015:i:c:p:444-455