Network reliability analysis based on percolation theory
Daqing Li,
Qiong Zhang,
Enrico Zio,
Shlomo Havlin and
Rui Kang
Reliability Engineering and System Safety, 2015, vol. 142, issue C, 556-562
Abstract:
In this paper, we propose a new way of looking at the reliability of a network using percolation theory. In this new view, a network failure can be regarded as a percolation process and the critical threshold of percolation can be used as network failure criterion linked to the operational settings under control. To demonstrate our approach, we consider both random network models and real networks with different nodes and/or edges lifetime distributions. We study numerically and theoretically the network reliability and find that the network reliability can be solved as a voting system with threshold given by percolation theory. Then we find that the average lifetime of random network increases linearly with the average lifetime of its nodes with uniform life distributions. Furthermore, the average lifetime of the network becomes saturated when system size is increased. Finally, we demonstrate our method on the transmission network system of IEEE 14 bus.
Keywords: Network reliability; Percolation theory; Phase transition; Criticality; Random network (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (36)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832015001702
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:142:y:2015:i:c:p:556-562
DOI: 10.1016/j.ress.2015.05.021
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().