EconPapers    
Economics at your fingertips  
 

An integrated unscented kalman filter and relevance vector regression approach for lithium-ion battery remaining useful life and short-term capacity prediction

Xiujuan Zheng and Huajing Fang

Reliability Engineering and System Safety, 2015, vol. 144, issue C, 74-82

Abstract: The gradual decreasing capacity of lithium-ion batteries can serve as a health indicator for tracking the degradation of lithium-ion batteries. It is important to predict the capacity of a lithium-ion battery for future cycles to assess its health condition and remaining useful life (RUL). In this paper, a novel method is developed using unscented Kalman filter (UKF) with relevance vector regression (RVR) and applied to RUL and short-term capacity prediction of batteries. A RVR model is employed as a nonlinear time-series prediction model to predict the UKF future residuals which otherwise remain zero during the prediction period. Taking the prediction step into account, the predictive value through the RVR method and the latest real residual value constitute the future evolution of the residuals with a time-varying weighting scheme. Next, the future residuals are utilized by UKF to recursively estimate the battery parameters for predicting RUL and short-term capacity. Finally, the performance of the proposed method is validated and compared to other predictors with the experimental data. According to the experimental and analysis results, the proposed approach has high reliability and prediction accuracy, which can be applied to battery monitoring and prognostics, as well as generalized to other prognostic applications.

Keywords: Lithium-ion battery; Capacity prediction; Remaining useful life; Relevance vector regression; Unscented Kalman filter (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (46)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832015002148
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:144:y:2015:i:c:p:74-82

DOI: 10.1016/j.ress.2015.07.013

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:reensy:v:144:y:2015:i:c:p:74-82