EconPapers    
Economics at your fingertips  
 

Engineering Risk Assessment of a dynamic space propulsion system benchmark problem

Donovan L. Mathias, Christopher J. Mattenberger and Susie Go

Reliability Engineering and System Safety, 2016, vol. 145, issue C, 316-328

Abstract: The Engineering Risk Assessment (ERA) team at NASA Ames Research Center develops dynamic models with linked physics-of-failure analyses to produce quantitative risk assessments of space exploration missions. This paper applies the ERA approach to the 2014 Probabilistic Safety Assessment and Management conference Space Propulsion System Benchmark Problem, which investigates dynamic system risk for a deep space ion propulsion system over three missions with time-varying thruster requirements and operations schedules. The dynamic missions are simulated using commercial software to generate integrated loss-of-mission (LOM) probability results via Monte Carlo sampling. The simulation model successfully captured all dynamics aspects of the benchmark missions, and convergence studies are presented to illustrate the sensitivity of integrated LOM results to the number of Monte Carlo trials. In addition, to evaluate the relative importance of dynamic modeling, the Ames Reliability Tool (ART) was used to build a series of quasi-dynamic, deterministic models that incorporated varying levels of the problem׳s dynamics. The ART model did a reasonable job of matching the simulation results for the simpler mission case, while auxiliary dynamic models were required to adequately capture risk-driver rankings for the more dynamic cases. This study highlights how state-of-the-art techniques can adapt to a range of dynamic problems.

Keywords: PRA; RISK simulation; Dynamic PSA; PSAM space propulsion system benchmark problem (search for similar items in EconPapers)
Date: 2016
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832015001933
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:145:y:2016:i:c:p:316-328

DOI: 10.1016/j.ress.2015.07.003

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:reensy:v:145:y:2016:i:c:p:316-328