EconPapers    
Economics at your fingertips  
 

An accelerated test method of luminous flux depreciation for LED luminaires and lamps

C. Qian, X.J. Fan, J.J. Fan, C.A. Yuan and G.Q. Zhang

Reliability Engineering and System Safety, 2016, vol. 147, issue C, 84-92

Abstract: Light Emitting Diode (LED) luminaires and lamps are energy-saving and environmental friendly alternatives to traditional lighting products. However, current luminous flux depreciation test at luminaire and lamp level requires a minimum of 6000h testing, which is even longer than the product development cycle time. This paper develops an accelerated test method for luminous flux depreciation to reduce the test time within 2000h at an elevated temperature. The method is based on lumen maintenance boundary curve, obtained from a collection of LED source lumen depreciation data, known as LM-80 data. The exponential decay model and Arrhenius acceleration relationship are used to determine the new threshold of lumen maintenance and acceleration factor. The proposed method has been verified by a number of simulation studies and experimental data for a wide range of LED luminaire and lamp types from both internal and external experiments. The qualification results obtained by the accelerated test method agree well with traditional 6000h tests.

Keywords: LED luminaire and lamp; Luminous flux depreciation; Lumen maintenance; Accelerated test; LM-80; Boundary curve (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832015003361
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:147:y:2016:i:c:p:84-92

DOI: 10.1016/j.ress.2015.11.009

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:reensy:v:147:y:2016:i:c:p:84-92