Rare-event probability estimation with adaptive support vector regression surrogates
J.-M. Bourinet
Reliability Engineering and System Safety, 2016, vol. 150, issue C, 210-221
Abstract:
Assessing rare event probabilities still suffers from its computational cost despite some available methods widely accepted by researchers and engineers. For low to moderately high dimensional problems and under the assumption of a smooth limit-state function, adaptive strategies based on surrogate models represent interesting alternative solutions. This paper presents such an adaptive method based on support vector machine surrogates used in regression. The key idea is to iteratively construct surrogates which quickly explore the safe domain and focus on the limit-state surface in its final stage. Highly accurate surrogates are constructed at each iteration by minimizing an estimation of the leave-one-out error with the cross-entropy method. Additional training points are generated with the Metropolis–Hastings algorithm modified by Au and Beck and a local kernel regression is made over a subset of the known data. The efficiency of the method is tested on examples featuring various challenges: a highly curved limit-state surface at a single most probable failure point, a smooth high-dimensional limit-state surface and a parallel system.
Keywords: Reliability assessment; Rare events; Adaptive surrogate models; Support vector machines; Regression; Span bound approximation; Hyperparameter selection (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (38)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832016000387
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:150:y:2016:i:c:p:210-221
DOI: 10.1016/j.ress.2016.01.023
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().