EconPapers    
Economics at your fingertips  
 

Bootstrapped-ensemble-based Sensitivity Analysis of a trace thermal-hydraulic model based on a limited number of PWR large break loca simulations

Francesco Di Maio, Alessandro Bandini, Enrico Zio, Sofia Carlos Alberola, Francisco Sanchez-Saez and Martorell, Sebastián

Reliability Engineering and System Safety, 2016, vol. 153, issue C, 122-134

Abstract: The safety verification of nuclear systems can be done by analyzing the outputs of Best-Estimate Thermal-Hydraulic (BE-TH) codes, which allow predicting the system response under safe and accidental conditions with greater realism as compared to conservative TH codes. In this case, it is necessary to quantify and control the uncertainties in the analysis, which affect the estimated safety margins. This can be achieved by Sensitivity Analysis (SA) and Uncertainty Analysis (UA) techniques tailored to handle the large computational costs of TH codes. This work presents an Ensemble-Based Sensitivity Analysis (EBSA) based on Finite Mixture Model (FMM) as an effective solution to keep low the code runs and handle the uncertainty in the SA methods. The approach proposed is challenged against a situation of a very low number of code runs: the Bootstrap method is, then, used in support. Three different strategies based on EBSA and Bootstrap are set forth (i.e., bottom-up, all-out and filter strategies). An application is provided with respect to a Large Break Loss of Coolant Accident (LBLOCA) simulated by a TRACE model of the Zion 1 Nuclear Power Plant (NPP).

Keywords: Safety margins; Uncertainty and Sensitivity Analysis; Finite mixture model; Ensemble of methods; Bootstrap method; Large break loss of coolant accident (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations View citations in EconPapers (1) Track citations by RSS feed

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832016300278
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:153:y:2016:i:c:p:122-134

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Dana Niculescu ().

 
Page updated 2018-05-05
Handle: RePEc:eee:reensy:v:153:y:2016:i:c:p:122-134