A comparison of Fault Trees and the Dynamic Flowgraph Methodology for the analysis of FPGA-based safety systems Part 1: Reactor trip logic loop reliability analysis
Phillip McNelles,
Zhao Chang Zeng,
Guna Renganathan,
Greg Lamarre,
Yolande Akl and
Lixuan Lu
Reliability Engineering and System Safety, 2016, vol. 153, issue C, 135-150
Abstract:
The use of Field Programmable Gate Arrays (FPGAs) in safety critical systems in nuclear power plants means that these systems must undergo a detailed reliability and safety analysis. Fault Tree Analysis (FTA) has seen extensive use in the nuclear power industry. However, FTA predates digital I&C systems, and only performs static analyses. Therefore, dynamic (time dependent) methodologies have been created to model and analyze digital I&C systems. One method is the Dynamic Flowgraph Methodology (DFM). DFM can model control loops and feedback, which are properties that FPGA-based systems include. This work presents a comparison of FTA and DFM analysis methods, for analyzing the reliability of a generic, one-parameter, one-channel FPGA-based reactor trip logic loop. The system was analyzed for two separate failure conditions, with the DFM and FTA results being compared. The DFM and FTA results were similar for simple systems using one time step, however the results were more different for multiple time steps and/or complex test systems. Issues with FTA were discovered pertaining to the oscillating clock states, leading to impossible MCS being returned by the FTA. Potential reasons for the different results returned by two methods are discussed, as is direction for future comparisons between these methods.
Keywords: FPGA; Fault Tree; DFM, Nuclear power plant; Digital I&C (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832016300424
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:153:y:2016:i:c:p:135-150
DOI: 10.1016/j.ress.2016.04.014
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().