Heuristic hybrid game approach for fleet condition-based maintenance planning
Qiang Feng,
Xiong Bi,
Xiujie Zhao,
Yiran Chen and
Bo Sun
Reliability Engineering and System Safety, 2017, vol. 157, issue C, 166-176
Abstract:
The condition-based maintenance (CBM) method is commonly used to select appropriate maintenance opportunities according to equipment status over a period of time. The CBM of aircraft fleets is a fleet maintenance planning problem. In this problem, mission requirements, resource constraints, and aircraft statuses are considered to find an optimal strategy set. Given that the maintenance strategies for each aircraft are finite, fleet CBM can be treated as a combinatorial optimization problem. In this study, the process of making a decision on the CBM of military fleets is analyzed. The fleet CBM problem is treated as a two-stage dynamic decision-making problem. Aircraft are divided into dispatch and standby sets; thus, the problem scale is significantly reduced. A heuristic hybrid game (HHG) approach comprising a competition game and a cooperative game is proposed on the basis of heuristic rule. In the dispatch set, a competition game approach is proposed to search for a local optimal strategy matrix. A cooperative game method for the two sets is also proposed to ensure global optimization. Finally, a case study regarding a fleet comprising 20 aircraft is conducted, with the results proving that the approach efficiently generates outcomes that meet the mission risk-oriented schedule requirement.
Keywords: Condition-based maintenance; Fleet maintenance planning; Hybrid game; Heuristic rule (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832016305154
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:157:y:2017:i:c:p:166-176
DOI: 10.1016/j.ress.2016.09.005
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().