A simulation-based optimization approach for free distributed repairable multi-state availability-redundancy allocation problems
Ahmad Attar,
Sadigh Raissi and
Kaveh Khalili-Damghani
Reliability Engineering and System Safety, 2017, vol. 157, issue C, 177-191
Abstract:
A simulation-based optimization (SBO) method is proposed to handle multi-objective joint availability-redundancy allocation problem (JARAP). Here, there is no emphasis on probability distributions of time to failures and repair times for multi-state multi-component series-parallel configuration under active, cold and hot standby strategies. Under such conditions, estimation of availability is not a trivial task. First, an efficient computer simulation model is proposed to estimate the availability of the aforementioned system. Then, the estimated availability values are used in a repetitive manner as parameter of a two-objective joint availability-redundancy allocation optimization model through SBO mechanism. The optimization model is then solved using two well-known multi-objective evolutionary computation algorithms, i.e., non-dominated sorting genetic algorithm (NSGA-II), and Strength Pareto Evolutionary Algorithm (SPEA2). The proposed SBO approach is tested using non-exponential numerical example with multi-state repairable components. The results are presented and discussed through different demand scenarios under cold and hot standby strategies. Furthermore, performance of NSGA-II and SPEA2 are statistically compared regarding multi-objective accuracy, and diversity metrics.
Keywords: Availability-redundancy allocation; Simulation based optimization (SBO); Multi-state systems; Distribution-free failure/repair time; Non-dominated sorting genetic algorithm; Repairable systems (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832016305142
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:157:y:2017:i:c:p:177-191
DOI: 10.1016/j.ress.2016.09.006
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().