A methodology based on the Birnbaum–Saunders distribution for reliability analysis applied to nano-materials
Leiva, VÃctor,
Fabrizio Ruggeri,
Helton Saulo and
Juan F. Vivanco
Reliability Engineering and System Safety, 2017, vol. 157, issue C, 192-201
Abstract:
The Birnbaum–Saunders distribution has been widely studied and applied to reliability studies. This paper proposes a novel use of this distribution to analyze the effect on hardness, a material mechanical property, when incorporating nano-particles inside a polymeric bone cement. A plain variety and two modified types of mesoporous silica nano-particles are considered. In biomaterials, one can study the effect of nano-particles on mechanical response reliability. Experimental data collected by the authors from a micro-indentation test about hardness of a commercially available polymeric bone cement are analyzed. Hardness is modeled with the Birnbaum–Saunders distribution and Bayesian inference is performed to derive a methodology, which allows us to evaluate the effect of using nano-particles at different loadings by the R software.
Keywords: Bayesian analysis; Hardness data; Markov chain Monte Carlo method; R software (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832016304379
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:157:y:2017:i:c:p:192-201
DOI: 10.1016/j.ress.2016.08.024
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().