A state-space-based prognostics model for lithium-ion battery degradation
Xin Xu and
Nan Chen
Reliability Engineering and System Safety, 2017, vol. 159, issue C, 47-57
Abstract:
This paper proposes to analyze the degradation of lithium-ion batteries with the sequentially observed discharging profiles. A general state-space model is developed in which the observation model is used to approximate the discharging profile of each cycle, the corresponding parameter vector is treated as the hidden state, and the state-transition model is used to track the evolution of the parameter vector as the battery ages. The EM and EKF algorithms are adopted to estimate and update the model parameters and states jointly. Based on this model, we construct prediction on the end of discharge times for unobserved cycles and the remaining useful cycles before the battery failure. The effectiveness of the proposed model is demonstrated using a real lithium-ion battery degradation data set.
Keywords: Degradation; PHM; State-space model; EKF; EM; RUC (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832016307207
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:159:y:2017:i:c:p:47-57
DOI: 10.1016/j.ress.2016.10.026
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().