Implementation of an adaptive meta-model for Bayesian finite element model updating in time domain
H.A. Jensen,
C. Esse,
V. Araya and
C. Papadimitriou
Reliability Engineering and System Safety, 2017, vol. 160, issue C, 174-190
Abstract:
This work explores the feasibility of integrating an adaptive meta-model into a finite element model updating formulation using dynamic response data. A Bayesian model updating approach based on a stochastic simulation method is considered in the present formulation. Such approach is combined with a surrogate technique and an efficient model reduction technique. In particular, an adaptive surrogate model based on kriging interpolants and a model reduction technique based on substructure coupling are implemented. The integration of these techniques into the updating process reduces the computational effort to manageable levels allowing the solution of complex problems. The effectiveness of the proposed strategy is demonstrated with three finite element model updating applications.
Keywords: Advanced simulation methods; Bayesian model updating; Kriging approximation; Reduced-order models; Transitional Markov chain Monte Carlo (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832016303131
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:160:y:2017:i:c:p:174-190
DOI: 10.1016/j.ress.2016.12.005
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().