Probabilistic risk assessment on maritime spent nuclear fuel transportation—Part I: Transport cask damage probability
Robby Christian and
Hyun Gook Kang
Reliability Engineering and System Safety, 2017, vol. 164, issue C, 124-135
Abstract:
This paper proposes a methodology to assess and reduce risks on Spent Nuclear Fuel (SNF) packages from ship collisions with a probabilistic approach. A method to estimate the impact energy upon a collision was elaborated in consideration that whether ships slide or stuck to each other during collision. Structural crash-worthiness of the SNF ship was obtained through a non-linear finite element analysis. Cask damage probability was calculated based on frontal and side cask impact scenarios. This cask damage probability was investigated over various transport parameters which include the number of transport casks carried per shipment, cask stowage configuration, cask loading direction, and ship's cruise velocity.
Keywords: Non-linear finite element analysis; Ship collision; Spent nuclear fuel transportation (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832016308730
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:164:y:2017:i:c:p:124-135
DOI: 10.1016/j.ress.2016.11.021
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().