EconPapers    
Economics at your fingertips  
 

A case study on global sensitivity analysis with dependent inputs: The natural gas transmission model

López-Benito, Alfredo and Bolado-Lavín, Ricardo

Reliability Engineering and System Safety, 2017, vol. 165, issue C, 11-21

Abstract: This paper addresses the identification of the most important input parameters in a natural gas transmission model, in particular regarding their possible effects on pressure and temperature drops. This model has the peculiarity that a significant number of its uncertain input parameters are dependent on each other. Combinations of input parameters considered a priori as valid deliver impossible physical results (i.e.: negative pressures). This advises the application of a sampling method that rejects samples that lead to non-physical results. In a Bayesian framework, selective sample rejection modifies the a priori probability density function (pdf) of independent input parameters producing an a posteriori pdf with dependent inputs. Borgonovo's δ has been the Global Sensitivity Analysis measure selected for performing the sensitivity analysis. The results obtained are completely in line with what physical intuition indicates.

Keywords: Global sensitivity analysis; Dependent inputs; Moment independent measures; Natural gas dynamics (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832017303447
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:165:y:2017:i:c:p:11-21

DOI: 10.1016/j.ress.2017.03.019

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:reensy:v:165:y:2017:i:c:p:11-21