Multilevel Monte Carlo for Reliability Theory
Louis J.M. Aslett,
Tigran Nagapetyan and
Sebastian J. Vollmer
Reliability Engineering and System Safety, 2017, vol. 165, issue C, 188-196
Abstract:
As the size of engineered systems grows, problems in reliability theory can become computationally challenging, often due to the combinatorial growth in the number of cut sets. In this paper we demonstrate how Multilevel Monte Carlo (MLMC) — a simulation approach which is typically used for stochastic differential equation models — can be applied in reliability problems by carefully controlling the bias-variance tradeoff in approximating large system behaviour. In this first exposition of MLMC methods in reliability problems we address the canonical problem of estimating the expectation of a functional of system lifetime for non-repairable and repairable components, demonstrating the computational advantages compared to classical Monte Carlo methods. The difference in computational complexity can be orders of magnitude for very large or complicated system structures, or where the desired precision is lower.
Keywords: Reliability theory; Multilevel Monte Carlo; Cut sets; System lifetime estimation (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832016302551
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:165:y:2017:i:c:p:188-196
DOI: 10.1016/j.ress.2017.03.003
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().