The effectiveness of adding cold standby redundancy to a coherent system at system and component levels
Serkan Eryilmaz
Reliability Engineering and System Safety, 2017, vol. 165, issue C, 331-335
Abstract:
The effect of adding cold standby redundancy to a system at system and component levels provides a useful information in reliability design. For a series (parallel) system adding cold standby redundancy at the component (system) level yields longer system lifetime. In this paper, the effect of adding cold standby redundancy to a general coherent structure at system and component levels is studied. In particular, signature-based expressions for the survival function of the system after standby redundancy at system and component levels are obtained. Thus for a given coherent structure with known signature, the survival functions and mean time to failure of new systems can be easily calculated and comparisons can be done in terms of stochastic ordering, and mean time to failure ordering. As a case study, circular consecutive-k-out-of-n:G system which can be used to analyze activities in a nuclear accelerator is considered.
Keywords: Coherent system; Cold standby; Mean time to failure; Signature (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832016309012
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:165:y:2017:i:c:p:331-335
DOI: 10.1016/j.ress.2017.04.021
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().