EconPapers    
Economics at your fingertips  
 

Efficient Monte Carlo methods for estimating failure probabilities

Andres Alban, Hardik A. Darji, Atsuki Imamura and Marvin K. Nakayama

Reliability Engineering and System Safety, 2017, vol. 165, issue C, 376-394

Abstract: We develop efficient Monte Carlo methods for estimating the failure probability of a system. An example of the problem comes from an approach for probabilistic safety assessment of nuclear power plants known as risk-informed safety-margin characterization, but it also arises in other contexts, e.g., structural reliability, catastrophe modeling, and finance. We estimate the failure probability using different combinations of simulation methodologies, including stratified sampling (SS), (replicated) Latin hypercube sampling (LHS), and conditional Monte Carlo (CMC). We prove theorems establishing that the combination SS+LHS (resp., SS+CMC+LHS) has smaller asymptotic variance than SS (resp., SS+LHS). We also devise asymptotically valid (as the overall sample size grows large) upper confidence bounds for the failure probability for the methods considered. The confidence bounds may be employed to perform an asymptotically valid probabilistic safety assessment. We present numerical results demonstrating that the combination SS+CMC+LHS can result in substantial variance reductions compared to stratified sampling alone.

Keywords: Probabilistic safety assessment; Risk analysis; Structural reliability; Uncertainty; Monte Carlo; Variance reduction; Confidence intervals; Nuclear regulation; Risk-informed safety-margin characterization (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832017304325
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:165:y:2017:i:c:p:376-394

DOI: 10.1016/j.ress.2017.04.001

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:reensy:v:165:y:2017:i:c:p:376-394